# QUESTION 6.

ŏ

4 (a) (i) Complete the truth table for this logic circuit:





| A | В | Working space | X |
|---|---|---------------|---|
| 0 | 0 |               |   |
| 0 | 1 |               |   |
| 1 | 0 |               |   |
| 1 | 1 |               |   |

[1]

(ii) Complete the truth table for this logic circuit:



| A | В | Working space | X |
|---|---|---------------|---|
| 0 | 0 |               |   |
| 0 | 1 |               |   |
| 1 | 0 |               |   |
| 1 | 1 |               |   |

[1]

| (b) | A s  | tudent decides to write an equation for <b>X</b> to represent the full behaviouit.    |
|-----|------|---------------------------------------------------------------------------------------|
|     | (i)  | Write the Boolean expression that will complete the required equation for X circuit:  |
|     |      | Circuit 1: <b>X</b> =                                                                 |
|     |      | Circuit 2: <b>X</b> =[2]                                                              |
|     | (ii) | Write the De Morgan's Law which is shown by your answers to part (a) and part (b)(i). |
|     |      | [1]                                                                                   |
| (c) | Wri  | te the Boolean algebraic expression corresponding to the following logic circuit:     |
|     |      |                                                                                       |
| (d) | Heir | ng De Morgan's laws and Boolean algebra, simplify your answer to <b>part (c)</b> .    |
| (u) |      | ow all your working.                                                                  |
|     |      |                                                                                       |
|     |      |                                                                                       |
|     |      |                                                                                       |
|     |      |                                                                                       |
|     |      |                                                                                       |

## QUESTION 7.



4 (a) (i) Complete the truth table for this logic circuit.



| Inp | out | Out | tput |
|-----|-----|-----|------|
| Х   | Υ   | Α   | В    |
| 0   | 0   |     |      |
| 0   | 1   |     |      |
| 1   | 0   |     |      |
| 1   | 1   |     |      |

(ii) State the name given to this logic circuit.

[1]

(iii) Name the labels usually given to **A** and **B**.

Label **A**Label **B**Explain why your answers are more appropriate for the **A** and **B** labels.

(b) (i) Write the Boolean expression corresponding to the following logic circuit.

A
B
C
C
(ii) Use Boolean algebra to simplify the expression that you gave in part (b)(i).

Show your working.

[2]

(a) (i) A half adder is a logic circuit with the following truth table

| cuit with the following truth table. |   |     |     |  |  |  |  |  |  |
|--------------------------------------|---|-----|-----|--|--|--|--|--|--|
| Input                                |   | Out | put |  |  |  |  |  |  |
| X                                    | Υ | Α   | В   |  |  |  |  |  |  |
| 0                                    | 0 | 0   | 0   |  |  |  |  |  |  |
| 0                                    | 1 | 0   | 1   |  |  |  |  |  |  |

The following logic circuit is constructed.



Complete the following truth table for this logic circuit.

| Input |   |   | Working space | Out | put |
|-------|---|---|---------------|-----|-----|
| Р     | Q | R |               | J   | K   |
| 0     | 0 | 0 |               |     |     |
| 0     | 0 | 1 |               |     |     |
| 0     | 1 | 0 |               |     |     |
| 0     | 1 | 1 |               |     |     |
| 1     | 0 | 0 |               |     |     |
| 1     | 0 | 1 |               |     |     |
| 1     | 1 | 0 |               |     |     |
| 1     | 1 | 1 |               |     |     |

| (ii) | State t    | he name | given to | this    | logic | circuit. |
|------|------------|---------|----------|---------|-------|----------|
|      | , Claic ii | ne name | givente  | , 11113 | logic | on oun.  |

| F4 1    |  |
|---------|--|
| - 1 1 1 |  |
| L . 1   |  |

[2]

| (iii)   | Name the labels usually given to <b>J</b> and <b>K</b> .                        |                    |
|---------|---------------------------------------------------------------------------------|--------------------|
|         | Label J                                                                         |                    |
|         | Label K                                                                         |                    |
|         | Explain why your answers are appropriate labels for these outputs.              |                    |
|         |                                                                                 |                    |
|         |                                                                                 |                    |
|         |                                                                                 |                    |
|         |                                                                                 | . [4]              |
| (b) (i) | Write down the Boolean expression corresponding to the following logic circuit: |                    |
|         | A B X                                                                           |                    |
|         | c                                                                               | . [2]              |
| (ii)    | Use Boolean algebra to simplify the expression given in part (b)(i).            |                    |
| (,      | Show your working.                                                              |                    |
|         |                                                                                 |                    |
|         |                                                                                 |                    |
|         |                                                                                 |                    |
|         |                                                                                 |                    |
|         |                                                                                 |                    |
|         |                                                                                 |                    |
|         |                                                                                 | . [ <del>4</del> ] |

## QUESTION 9.

3 Consider the following logic circuit, which contains a redundant logic gate.



(a) Write the Boolean algebraic expression corresponding to this logic circuit.

| V        | _ | г | 2 | ı |
|----------|---|---|---|---|
| $\wedge$ | = |   | J | ı |

(b) Complete the truth table for this logic circuit.

| Α | В | С | Working space | Х |
|---|---|---|---------------|---|
| 0 | 0 | 0 |               |   |
| 0 | 0 | 1 |               |   |
| 0 | 1 | 0 |               |   |
| 0 | 1 | 1 |               |   |
| 1 | 0 | 0 |               |   |
| 1 | 0 | 1 |               |   |
| 1 | 1 | 0 |               |   |
| 1 | 1 | 1 |               |   |

(c) (i) Complete the Karnaugh Map (K-map) for the truth table in part (b).

AB 00 01 11 10 0 C

The K-map can be used to simplify the expression in **part (a)**.

(ii) Draw loop(s) around appropriate groups to produce an optimal sum-of-products. [2]

(iii) Write a simplified sum-of-products expression, using your answer to part (ii).

| ` | V          | ro.   | ď.  |
|---|------------|-------|-----|
| , | X <b>–</b> | 1.7   | / ■ |
|   | /\ =       | . 1 🗲 | . І |

[2]

[1]

#### (d) One Boolean identity is:



#### $A + \overline{A}.B = A + B$

| Simplify the expression for X in <b>part (a)</b> to the expression for X in <b>part (c)(iii)</b> . You should the given identity. |
|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                   |
|                                                                                                                                   |
| [2                                                                                                                                |

## **QUESTION 10.**



#### 3 A logic circuit is shown:



- (a) Write the Boolean algebraic expression corresponding to this logic circuit:
  - S = .....[4]

| (b) Complete the truth table for this logic circular | (b) | ) Complete t | he truth | table for | this | loaic | circuit |
|------------------------------------------------------|-----|--------------|----------|-----------|------|-------|---------|
|------------------------------------------------------|-----|--------------|----------|-----------|------|-------|---------|

| Р | Q | R | Working space | S |
|---|---|---|---------------|---|
| 0 | 0 | 0 |               |   |
| 0 | 0 | 1 |               |   |
| 0 | 1 | 0 |               |   |
| 0 | 1 | 1 |               |   |
| 1 | 0 | 0 |               |   |
| 1 | 0 | 1 |               |   |
| 1 | 1 | 0 |               |   |

| Ш |
|---|
| Ц |

[2]

(c) (i) Complete the Karnaugh Map (K-map) for the truth table in part (b).

1

PQ

|   |   | 00 | 01 | 11 | 10 |
|---|---|----|----|----|----|
| R | 0 |    |    |    |    |
| n | 1 |    |    |    |    |

[1]

The K-map can be used to simplify the function in part (a).

- (ii) Draw loop(s) around appropriate groups to produce an optimal sum-of-products. [1]
- (iii) Write a simplified sum-of-products expression, using your answer to part (ii).

| 0 |   | · | F4 | 1 |
|---|---|---|----|---|
|   |   |   |    |   |
| u | _ |   |    |   |

(d) One Boolean identity is:

1

1

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

Simplify the expression for S in part (a) to the expression for S in part (c)(iii).

You should use the given identity and De Morgan's Laws.

| <br> |
|------|
|      |
| <br> |
| <br> |
| <br> |

# QUESTION 11.

3 (a) Consider the following Boolean expression.



| Use Boolean algebra to simplify the expression. |     |
|-------------------------------------------------|-----|
|                                                 |     |
|                                                 |     |
|                                                 |     |
|                                                 |     |
|                                                 |     |
|                                                 |     |
|                                                 | [4] |

(b) (i) Complete the truth table for the following logic circuit.



| A | В | С | Working space | x |
|---|---|---|---------------|---|
| 0 | 0 | 0 |               |   |
| 0 | 0 | 1 |               |   |
| 0 | 1 | 0 |               |   |
| 0 | 1 | 1 |               |   |
| 1 | 0 | 0 |               |   |
| 1 | 0 | 1 |               |   |
| 1 | 1 | 0 |               |   |
| 1 | 1 | 1 |               |   |

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (b)(i).

| A  | п |   |
|----|---|---|
| /\ |   | - |

|   |   | 00 | 01 | 11 | 10 |
|---|---|----|----|----|----|
| • | 0 |    |    |    |    |
| С | 1 |    |    |    |    |

[1]

[2]

- (iii) Draw loops around appropriate groups of 1s in the table in part (b)(ii) to produce an optimal sum-of-products.
- (iv) Using your answer to part (b)(iii), write a simplified sum-of-products Boolean expression.

**(c)** The truth table for a logic circuit with four inputs is shown.

| Г | _ | 7 | ī |
|---|---|---|---|
|   |   |   | ı |
| 느 |   | 4 | J |
|   |   |   |   |

|   | OUTPUT |   |   |   |
|---|--------|---|---|---|
| Α | В      | С | D | х |
| 0 | 0      | 0 | 0 | 0 |
| 0 | 0      | 0 | 1 | 0 |
| 0 | 0      | 1 | 0 | 0 |
| 0 | 0      | 1 | 1 | 0 |
| 0 | 1      | 0 | 0 | 1 |
| 0 | 1      | 0 | 1 | 0 |
| 0 | 1      | 1 | 0 | 0 |
| 0 | 1      | 1 | 1 | 0 |
| 1 | 0      | 0 | 0 | 0 |
| 1 | 0      | 0 | 1 | 0 |
| 1 | 0      | 1 | 0 | 0 |
| 1 | 0      | 1 | 1 | 0 |
| 1 | 1      | 0 | 0 | 1 |
| 1 | 1      | 0 | 1 | 1 |
| 1 | 1      | 1 | 0 | 1 |
| 1 | 1      | 1 | 1 | 1 |

(i) Complete the K-map for the truth table in part (c).

AB



[4]

(ii) Draw loops around appropriate groups of 1s in the table in **part (c)(i)** to produce an optimal sum-of-products. [2]

(iii) Using your answer to part (c)(ii), write a simplified sum-of-products Boolean expression.

**X** = .....[2]

## **QUESTION 12.**

(a) The following logic circuit can be simplified to use only one gate.





Give the name of this single gate.

| •  |    |  |
|----|----|--|
| I: | 11 |  |
|    |    |  |

(b) (i) Complete the truth table for the logic circuit.



| A | В | Working space | X | Υ |
|---|---|---------------|---|---|
| 0 | 0 |               |   |   |
| 0 | 1 |               |   |   |
| 1 | 0 |               |   |   |
| 1 | 1 |               |   |   |

| (ii)  | Give the name of the logic circuit that has this truth table. |
|-------|---------------------------------------------------------------|
|       | [1]                                                           |
| (iii) | Give the uses for outputs <b>X</b> and <b>Y</b> .             |
|       | <b>x</b>                                                      |
|       | Υ                                                             |

[2]

(c) Consider the following Boolean algebraic expression:



| Α. | В | .С. | D | + A | . B | . C | . D | + A. | . B | . С | . D | + A. | . B | . C | . D | + A | . B | . C . | . D |
|----|---|-----|---|-----|-----|-----|-----|------|-----|-----|-----|------|-----|-----|-----|-----|-----|-------|-----|

Use Boolean algebra to simplify the expression. Show your working.

Working

Simplified expression [5]

## **QUESTION 13.**

3 (a) A Boolean algebraic expression produces the following truth table.

|  | Ĭ            |  |
|--|--------------|--|
|  | $\downarrow$ |  |
|  |              |  |

|   | INPUT |   |   |  |  |  |
|---|-------|---|---|--|--|--|
| Α | В     | С | X |  |  |  |
| 0 | 0     | 0 | 1 |  |  |  |
| 0 | 0     | 1 | 1 |  |  |  |
| 0 | 1     | 0 | 1 |  |  |  |
| 0 | 1     | 1 | 1 |  |  |  |
| 1 | 0     | 0 | 1 |  |  |  |
| 1 | 0     | 1 | 1 |  |  |  |
| 1 | 1     | 0 | 0 |  |  |  |
| 1 | 1     | 1 | 0 |  |  |  |

(i) Complete the Karnaugh Map (K-map) for the truth table.

| _ |
|---|
|   |
| _ |
|   |

|   |   | 00 | 01 | 11 | 10 |
|---|---|----|----|----|----|
| • | 0 |    |    |    |    |
| С | 1 |    |    |    |    |

[1]

The K-map can be used to simplify the expression that produced the truth table in part (a).

- (ii) Draw loops around appropriate groups of 1s in the K-map to produce an optimal sum-of-products. [2]
- (iii) Write the simplified sum-of-products Boolean expression for the truth table.

| V | _ | · · · · · · · · · · · · · · · · · · · | [0] | 1 |
|---|---|---------------------------------------|-----|---|
| Λ | _ |                                       | 14  |   |

(b) A logic circuit with four inputs produces the following truth table.

|  | П |
|--|---|
|  |   |
|  |   |

|   | INPUT |   |   | OUTPUT |
|---|-------|---|---|--------|
| Α | В     | С | D | Х      |
| 0 | 0     | 0 | 0 | 0      |
| 0 | 0     | 0 | 1 | 0      |
| 0 | 0     | 1 | 0 | 1      |
| 0 | 0     | 1 | 1 | 1      |
| 0 | 1     | 0 | 0 | 0      |
| 0 | 1     | 0 | 1 | 0      |
| 0 | 1     | 1 | 0 | 1      |
| 0 | 1     | 1 | 1 | 1      |
| 1 | 0     | 0 | 0 | 1      |
| 1 | 0     | 0 | 1 | 1      |
| 1 | 0     | 1 | 0 | 0      |
| 1 | 0     | 1 | 1 | 0      |
| 1 | 1     | 0 | 0 | 1      |
| 1 | 1     | 0 | 1 | 1      |
| 1 | 1     | 1 | 0 | 0      |
| 1 | 1     | 1 | 1 | 0      |

(i) Complete the K-map for the truth table.

AB



[4]

(ii) Draw loops around appropriate groups of 1s in the K-map to produce an optimal sum-of-products. [2]

(iii) Write the simplified sum-of-products Boolean algebraic expression for the truth table.

### **QUESTION 14.**

2 (a) A Boolean expression produces the following truth table.

| INPUT |   |   | OUTPUT |
|-------|---|---|--------|
| Α     | В | С | X      |
| 0     | 0 | 0 | 1      |
| 0     | 0 | 1 | 1      |
| 0     | 1 | 0 | 1      |
| 0     | 1 | 1 | 1      |
| 1     | 0 | 0 | 1      |
| 1     | 0 | 1 | 1      |
| 1     | 1 | 0 | 0      |
|       |   |   |        |

| / |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |

(i) Write the Boolean expression for the truth table by applying the sum-of-products.

| <b>X</b> = |   | • • • |
|------------|---|-------|
|            | [ | 3]    |

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (a).

AB

|   | 00 | 01 | 11 | 10 |
|---|----|----|----|----|
| 0 |    |    |    |    |
| 1 |    |    |    |    |

[1]

The K-map can be used to simplify the function in part (a)(i).

C

- (iii) Draw loop(s) around appropriate groups in the table in **part (a)(ii)**, to produce an optimal sum-of-products. [2]
- (iv) Write, using your answer to **part** (a)(iii), a simplified Boolean expression for your Karnaugh map.

| X | [2 | 21 |  |
|---|----|----|--|
| - |    | -1 |  |

| (b) | Simplify the following expression using De Morgan's laws. Show your workin |
|-----|----------------------------------------------------------------------------|
|     | $(\overline{\overline{W}} + X) \cdot (Y + \overline{\overline{Z}})$        |
|     |                                                                            |
|     |                                                                            |
|     |                                                                            |
|     |                                                                            |
|     |                                                                            |

.....[3]